Latest Research
August 22, 2024 Hanqi Zhou, Robert Bamler, Charley M. Wu, Álvaro Tejero-Cantero

Knowledge Tracing for Life-long Personalized Learning

Read More
Latest Research
April 18, 2024 Rita González-Márquez

Navigating 20 Million Papers at Once to Uncover Knowledge

Read More
Science Stories
March 7, 2024 Sarah Bioly

Better Understanding the Monsoons and the El Niño

Read More
Debate
August 14, 2023 Tilman Gocht, Martin Krohs

New Directions in Science Communication: The Themed Channel “AI and Sustainability”

Read More
Latest Research
August 22, 2024 Hanqi Zhou, Robert Bamler, Charley M. Wu, Álvaro Tejero-Cantero

Knowledge Tracing for Life-long Personalized Learning

Online learning platforms are popular tools for acquiring new knowledge on our own. However, these platforms have significant shortcomings. We present a new algorithm allowing us to trace the knowledge of learners more accurately, creating opportunities for empowerment by adapting the learning process to their personalized needs.
Science Stories
March 7, 2024 Sarah Bioly

Better Understanding the Monsoons and the El Niño

Bedartha Goswami’s goal is to build a bridge between machine learning and climate science. It’s not easy: when new methods in machine learning are developed, the ways that they can be applied in the climate sector is often not considered. Goswami is a team player, so his solution has been to put together a group with the interdisciplinary expertise needed for real breakthroughs in climate science.
Debate
August 14, 2023 Tilman Gocht, Martin Krohs

New Directions in Science Communication: The Themed Channel “AI and Sustainability”

“AI and Sustainability” – Since April 4th, 2023, the science and debate platform te.ma has offered the public a discussion forum, a place to ask questions, or simply to inform themselves about the topic. With this new approach, te.ma and the Cluster of Excellence "Machine Learning" aim to provide new impulses in the complicated thicket of science communication that are focused on dialogue with the public.

Article Overview

Latest Research
August 22, 2024 Hanqi Zhou, Robert Bamler, Charley M. Wu, Álvaro Tejero-Cantero

Knowledge Tracing for Life-long Personalized Learning

Online learning platforms are popular tools for acquiring new knowledge on our own. However, these platforms have significant shortcomings. We present a new algorithm allowing us to trace the knowledge of learners more accurately, creating opportunities for empowerment by adapting the learning process to their personalized needs.
Read More
Science Stories
March 7, 2024 Sarah Bioly

Better Understanding the Monsoons and the El Niño

Bedartha Goswami’s goal is to build a bridge between machine learning and climate science. It’s not easy: when new methods in machine learning are developed, the ways that they can be applied in the climate sector is often not considered. Goswami is a team player, so his solution has been to put together a group with the interdisciplinary expertise needed for real breakthroughs in climate science.
Read More
Debate
August 14, 2023 Tilman Gocht, Martin Krohs

New Directions in Science Communication: The Themed Channel “AI and Sustainability”

“AI and Sustainability” – Since April 4th, 2023, the science and debate platform te.ma has offered the public a discussion forum, a place to ask questions, or simply to inform themselves about the topic. With this new approach, te.ma and the Cluster of Excellence "Machine Learning" aim to provide new impulses in the complicated thicket of science communication that are focused on dialogue with the public.
Read More
Science Stories
October 25, 2022 Sarah Bioly

Predicting future energy supply

We can’t change how much the sun shines or how hard the wind will blow. But if we want to utilise renewable energy better, we need to take into account how weather and climate will change over time. Nicole Ludwig, an expert in machine learning and renewable energy systems, develops models that do just that.
Read More
Latest Research
April 18, 2024 Rita González-Márquez

Navigating 20 Million Papers at Once to Uncover Knowledge

More than one million papers are published every year in the field of biomedicine and life sciences – an overwhelming volume. To help navigate through the literature, we created a map of the entire landscape of biomedical research using machine learning tools, in the form of an interactive website that allows you to browse 20 million papers simultaneously and see connections between them.
Read More
Science Stories
September 27, 2023 Aikaterini Filippidou, Tilman Gocht

How to put on an exhibition

Since the Cyber Valley initiative was established, there has been a controversial debate in Tübingen about research into artificial intelligence (AI) and machine learning. Of all the places in Europe, this picturesque town on the Neckar is supposedly one of the most important centres of AI research? For many, it is hard to imagine.
Read More
Latest Research
September 7, 2023 Anna Giron, Charley Wu

Do humans and algorithms learn alike?

When children develop into adults, how they learn changes a lot. While children show a lot of random behaviour, adults perform more goal-directed actions. An influential theory describes these changes as being similar to the behaviour of an optimisation algorithm commonly used in machine learning. This empirical test shows that there are striking similarities but also important differences between human development and machine learning algorithms.
Read More
Science Stories
May 15, 2023 Kathrin Schwarze-Reiter

Making the world a little bit better with AI

With a PhD in machine learning, the world seems to lie at your feet. But what to do afterwards: academia, the IT-sector, or something else entirely? For Poornima Ramesh, the answer is clear: she wants to use machine learning to improve people’s lives in places where the problems are most urgent. To further this goal, she joined a global advisory, data analytics, and research organization.
Read More
Science Stories
March 21, 2023 Christian Baumgartner , Felix Strnad, Jakob Schlör, Philipp Berens, Alexandra Gessner, Philipp Hennig

How to make business trips more climate friendly

A meeting in Vienna, a lecture in Boston, a conference in London – academic events such as these are a part of researchers’ everyday working lives. They are where researchers meet their scientific communities to discuss their own research, exchange ideas with others and develop new ideas for collaboration. But how do they get to London, Boston, or Vienna?
Read More
Debate
February 15, 2023 Bubacarr Bah, Philipp Berens, Franca Hoffmann, Audrey Namdiero-Walsh, Wilfred Ndifon

Developing Data Science and Machine Learning in Africa

Research in machine learning and data science in and from Africa has the potential to play a more significant global role and faces unique challenges. The pan-African network of AIMS (African Institute for Mathematical Sciences) and its postgraduate programmes prepare young Africans to contribute towards this goal.
Read More
Latest Research
January 24, 2023 Valentyn Boreiko, Maximilian Augustin

Opening the Black-Box of Deep Learning in Image Classification

Deep learning algorithms are very good at recognizing specific objects (e.g. a dog, a car) within an image ​(known as image classifiers)​. But how do they actually do that? Most often the mechanisms underlying an algorithm’s decision remain opaque. What if we could explain any ​such ​black-box algorithm intuitively and, by doing so, even learn from it?​
Read More
Latest Research
November 29, 2022 Katja Schwarz

Escaping Plato’s Cave: Teaching machines the 3D nature of our world

Understanding the 3D nature of our world is key to many applications in augmented and virtual reality and simulation. But 3D training data is difficult to obtain. Hence, we develop an algorithm to create 3D graphics that can be trained with 2D images alone. By designing our algorithm such that it can represent 3D data efficiently, we keep the computational cost manageable while moving from 2D images to 3D graphics.
Read More
Debate
September 13, 2022 Larissa Höfling, Ilja Mirsky

Rooting Democracy in the Digital Age

Artificial intelligence (AI) and democracy have many touchpoints. What is unclear, however, is whether AI will strengthen or weaken democracy in the long run. It is about time that we, as researchers and citizens, get more involved and develop ideas for a digitally competent democracy together.
Read More
Latest Research
July 25, 2022 Eric Raidl, Sebastian Bordt, Michèle Finck, Ulrike von Luxburg

Artificial Intelligence (AI) – Should it explain itself?

We are no longer baffled by all the tasks algorithms can perform. And apparently, they are now even able to ‘explain’ their output. But is that something we really want?
Read More
Latest Research
July 15, 2022 Matthias Karlbauer, Timothy Praditia, Sebastian Otte, Sergey Oladyshkin, Wolfgang Nowak, Martin V. Butz

Fusing Physical Knowledge with Neural Networks’ Flexibility

Diffusion processes in nature are highly complex, and scientists strive to understand them in detail. With a new physics-aware neural network, we were able to model and predict such processes much more precisely than previously possible.
Read More
Science Stories
April 20, 2022 Sarah Bioly

From Cape Town and Khartoum to Tübingen

Different perspectives advance research. Yet Africa is considered all too rarely in this context. A fellowship program for young researchers aims to change that. It brings five talents from African countries to Tübingen to spend half a year working on research projects in machine learning.
Read More
Latest Research
February 21, 2022 Robert Geirhos

Do machines see like humans? They are getting closer

Machines may drive you to work one day, but they currently still fail when faced with unusual situations or noisy data. That’s because machines see the world very differently from humans - but this gap is starting to narrow.
Read More
Latest Research
January 21, 2022 Linda Behringer, Maximilian Dax, Elke Müller

Machine Learning Decodes Tremors of the Universe

Researchers train a neural network to estimate – in just a few seconds – the precise characteristics of merging black holes based on their gravitational-wave emissions. The network determines the masses and spins of the black holes, where in the sky, at what angle, and how far away from Earth the merger took place.
Read More
Debate
December 15, 2021 Bob Williamson

AI as Mediator

There is currently much debate about the ethics of Artificial Intelligence (AI), with one widespread view holding that AI should never be used to make consequential decisions affecting people. In this blog post, I suggest that on the contrary, rather than worrying about AI “making decisions” about us, we should should pay more attention to who commissioned the chain of technological action using AI rather than the technology itself.
Read More
Science Stories
December 6, 2021 Theresa Authaler

Towards AI systems that can explain decisions

Skepticism about the use of AI systems is widespread. Many say the systems are too opaque. Professor for Explainable Machine Learning Zeynep Akata wants to change that - and has made the user’s perspective the focal point of her research.
Read More
Latest Research
October 6, 2021 Philipp Berens, Dmitry Kobak

First comprehensive atlas of neuron types in the brain

With hundreds of scientists, we have explored the properties of different neuron types in mice, monkeys and humans using novel experimental techniques and machine learning methods for data analysis. The result is a unique overview of the motor cortex in the brain and its evolution.
Read More
Latest Research
September 7, 2021 Artur Speiser

Machine Learning Improves
Super-resolution Microscopy

Single-molecule localization microscopy is a powerful method to image cellular structures with nanometer resolution. We developed DECODE, a deep learning based analysis algorithm that makes this technique faster and more precise.
Read More
Latest Research
July 19, 2021 Michael Deistler, Jonathan Oesterle

Identifying Models in
Neuroscience with Machine Learning

Computer models are a great tool to analyze neuronal mechanisms in the brain, but tuning these models to match brain activity has long been a daunting task for scientists. We developed a new machine learning tool that automates this process and used it to develop a simulation environment for a retinal implant.
Read More
Debate
July 19, 2021 Thomas Grote

Where Algorithms and People Are Allies

Who makes better medical diagnoses, an algorithm or a human? A philosopher specialized in technology, Thomas Grote, says viewing this as a rivalry isn’t productive. He argues in favor of focusing on the interplay of the two – and emphasizes the significance of philosophy.
Read More
Science Stories
July 19, 2021 Nina Himmer

When Artificial Intelligence Predicts a Heart Attack

Algorithms are becoming better and better at analyzing medical images and recognizing diseases. Researchers Christian Baumgartner and Sergios Gatidis – one an expert on artificial intelligence (AI), the other a radiologist – expect that algorithms will fundamentally change doctors’ work.
Read More
Science Stories
July 19, 2021 Theresa Authaler

Responsibility Cannot Be Delegated to an Algorithm

Computer Science Professor Ulrike von Luxburg speaks in an interview about the opportunities and challenges of trimming machine learning systems to fairness. Prof. von Luxburg also explains why she is convinced that people, rather than machines should resolve certain questions.
Read More
Latest Research
July 18, 2021 Tobias Rentschler , Ulrike Werban , Sandra Teuber, Karsten Schmidt , Thomas Scholten

Using Machine Learning for 3D Soil Mapping

Spatial soil variability makes a farmer's daily business challenging as it leads to varying growth conditions for field crops. Machine learning can help to map soil properties so that farmers can adapt fertilizing and irrigation management in a time- and cost-efficient way.
Read More
Latest Research
July 18, 2021 Agustinus Kristiadi , Philipp Hennig

Painless Uncertainty for Deep Learning

The Bayesian formalism can add uncertainty to deep neural networks. But Bayesian deep learning has a reputation as cumbersome and expensive. No longer. Recent results show how to achieve calibrated uncertainty in deep networks efficiently, without affecting their predictive performance.
Read More

Funded By

Our Partners