Uni Tübingen
A Blog by Machine Learning Cluster
21. Januar 2022
Artikel von Linda Behringer, Maximilian Dax, Elke Müller

Maschinelles Lernen entschlüsselt Beben im Universum

Forschende trainieren ein neuronales Netz darauf, in nur wenigen Sekunden die Eigenschaften verschmelzender schwarzen Löcher anhand der abgestrahlten Gravitationswellen präzise abzuschätzen. Das Netzwerk bestimmt die Massen und Eigendrehimpulse der schwarzen Löcher, sowie wo am Himmel, in welchem Winkel und wie weit von der Erde entfernt die Verschmelzung stattgefunden hat.

Schwarze Löcher sind eines der größten Rätsel des Universums. Mit einer Masse Milliarden mal so groß wie die unserer Sonne erzeugen zwei ineinander verschmelzende schwarze Löcher in einer gewaltigen Explosion eine Gravitationswelle, die sich mit Lichtgeschwindigkeit im Universum ausbreitet. Gigantische Detektoren in den USA (LIGO) und Italien (Virgo) messen diesen Beleg für das von Albert Einstein 1916 vorhergesagte Phänomen: die Veränderung der Raumzeit. Ein Beben des Universums. 100 Jahre später wurde die erste Gravitationswelle tatsächlich gemessen. Kurz darauf, im Jahr 2017 folgte dafür der Physik-Nobelpreis.

Seit der ersten Entdeckung von Gravitationswellen vergleichen die LIGO und Virgo Wissenschaftlerinnen und Wissenschaftler die von den Observatorien gesammelten Daten mit theoretischen Vorhersagen, um so die Eigenschaften der Quelle abzuschätzen, z. B. wie groß die schwarzen Löcher sind und wie schnell sie sich drehen. Derzeit dauert dieses Verfahren mehrere Stunden, oft sogar Monate.

Ein interdisziplinäres Forscherteam nutzt modernste Methoden des maschinellen Lernens, um diesen Prozess zu beschleunigen. Das Team besteht aus Wissenschaftlerinnen und Wissernschaftlern des Max-Planck-Instituts für Intelligente Systeme (MPI-IS) in Tübingen, des Max-Planck-Instituts für Gravitationsphysik (Albert-Einstein-Institut/AEI) in Potsdam, der Universität Tübingen und der University of Maryland. Sie entwickelten einen Algorithmus, der ein tiefes neuronales Netz verwendet, das ähnlich wie ein menschliches Gehirn auf mehreren Ebenen große Datensätze analysiert. Sekundenschnell schließt das System auf alle Eigenschaften der beiden miteinander verschmelzenden schwarzen Löcher. Die Forschungsergebnisse wurden kürzlich in der bedeutendsten Fachzeitschrift für Physik, den Physical Review Letters, veröffentlicht.

ABBILDUNGEN / Der neue Machine-Learning-Algorithmus schätzt alle Parameter, die eine Quelle aus zwei schwarzen Löchern charakterisieren, in nur wenigen Sekunden genau ab. Die Abbildung auf der linken Seite zeigt die Himmelspositionen, die für acht Ereignisse aus dem ersten und zweiten LIGO/Virgo-Beobachtungslauf ermittelt wurden. Sie vergleicht die Schätzung durch maschinelles Lernen (farbig) mit der wesentlich langsameren Standardmethode (grau). Die rechte Seite zeigt vier abgeleitete Parameter (die Chirp-Masse, das ist die Kombination der beiden Einzelmassen, das Massenverhältnis und zwei Spin-Parameter) für GW150914 (maschinelles Lernen in orange, Standardmethode in blau).   © M. Dax, S. R. Green, J. Gair, J. H. Macke, A. Buonanno, B. Schölkopf

Neuronales Netz analysiert Gravitationswellen in Echtzeit

„Unsere Methode kann in wenigen Sekunden sehr genaue Aussagen darüber treffen, wie groß und schwer die zwei schwarzen Löcher waren, die bei ihrer Verschmelzung die Gravitationswellen erzeugt haben. Wie schnell rotieren die schwarzen Löcher, wie weit sind sie von der Erde entfernt und aus welcher Richtung kommt die Gravitationswelle? All diese Informationen können wir aus den Beobachtungsdaten ableiten und darüber hinaus Aussagen über die Genauigkeit dieser Berechnung treffen“, erklärt Maximilian Dax, Erstautor der Publikation Real-Time Gravitational Wave Science with Neural Posterior Estimation. Der Doktorand der Abteilung für Empirische Inferenz am MPI-IS ist Mitglied der LIGO Scientific Collaboration.

Das Forscherteam trainierte das neuronale Netz mit vielen Simulationen – vorausberechnete Gravitationswellen für hypothetische Doppelsysteme von schwarzen Löchern kombiniert mit dem Rauschen der Detektoren. Auf diese Weise lernt das Netzwerk die Zusammenhänge zwischen den gemessenen Gravitationswellendaten und den Parametern, die das zugrunde liegende System schwarzer Löcher charakterisieren. Es dauert zehn Tage, bis der Algorithmus namens DINGO (die Abkürzung steht für Deep INference for Gravitational-wave Observations) ausgelernt hat. Dann ist er einsatzbereit: in nur wenigen Sekunden leitet das Netzwerk aus den Daten neu beobachteter Gravitationswellen die Größe, die Eigendrehimpulse und alle anderen Parameter ab, die die schwarzen Löcher beschreiben. Die hochgenaue Analyse entschlüsselt fast in Echtzeit die Kräuselungen der Raumzeit – das hat es in dieser Geschwindigkeit und Präzision noch nie gegeben.

Simulationsbasierte Erkenntnisse könnten in vielen Wissenschaftsbereichen wegweisend sein

„Je weiter wir mit immer empfindlicheren Detektoren ins Weltall blicken, desto mehr Gravitationswellen werden gemessen. Schnelle Methoden wie die unsere sind daher unerlässlich, um all diese Daten in angemessener Zeit zu analysieren“, sagt Stephen Green, Wissenschaftler in der Abteilung Astrophysikalische und Kosmologische Relativitätstheorie am AEI. „DINGO hat den Vorteil, dass es – einmal trainiert – neue Ereignisse sehr schnell analysieren kann. Wichtig ist dabei auch, dass es detaillierte Schätzungen der Ungenauigkeit von Parametern liefert, die in der Vergangenheit mit Methoden des maschinellen Lernens nur schwer zu ermitteln waren.“

Bislang verwenden die Forscherinnen und Forscher der LIGO- und Virgo-Kollaborationen sehr rechenintensive Algorithmen zur Analyse der Daten. Sie benötigen für die Interpretation jeder Messung Millionen neuer Simulationen von Gravitationswellen. Das dauert mehrere Stunden bis Monate – DINGO jedoch ist weitaus schneller, da das trainierte Netzwerk keine weiteren Simulationen für die Analyse neuer Beobachtungsdaten benötigt; ein Verfahren, das als „amortisierte Inferenz“ bekannt ist.

Vielversprechend ist die Methode auch für komplexere Gravitationswellensignale von Kollisionen schwarzer Löcher, deren Analyse mit den bislang verfügbaren Algorithmen sehr lange dauert, sowie für zwei verschmelzende Neutronensterne. Während bei der Kollision von schwarzen Löchern Energie ausschließlich in Form von Gravitationswellen freigesetzt wird, senden verschmelzende Neutronensterne zusätzlich elektromagnetische Strahlung aus. Sie sind daher auch für herkömmliche Teleskope sichtbar, die möglichst schnell auf die entsprechende Himmelsregion ausgerichtet werden müssen, um das Ereignis beobachten zu können. Dazu muss man sehr schnell feststellen, woher die Gravitationswelle kommt, was durch die neue Methode des maschinellen Lernens erleichtert wird. In Zukunft könnten diese Informationen dafür genutzt werden, die Teleskope rechtzeitig auszurichten, um elektromagnetische Signale von Kollisionen von Neutronensternen oder eines Neutronensterns mit einem schwarzen Loch zu beobachten.

Alessandra Buonanno, Direktorin am AEI, und Bernhard Schölkopf, Direktor am MPI-IS, freuen sich auf die nächste Phase ihrer erfolgreichen Zusammenarbeit. Buonanno erwartet, dass „diese Konzepte in Zukunft eine viel realistischere Behandlung des Detektorrauschens und der Gravitationssignale ermöglichen werden, als dies heute mit Standardtechniken möglich ist“, und Schölkopf fügt hinzu: „Solche simulationsbasierten Erkenntnisse unter Verwendung von maschinellem Lernen könnten wegweisend in vielen Bereichen der Wissenschaft sein, in denen wir ein komplexes Modell aus verrauschten Beobachtungen ableiten müssen.“

Originalveröffentlichung: Maximilian Dax, Stephen R. Green, Jonathan Gair, Jakob H. Macke, Alessandra Buonanno, Bernhard Schölkopf: Real-Time Gravitational Wave Science with Neural Posterior Estimation. Physical Review Letters, 2021.

Text: Linda Behringer, Maximilian Dax, Elke Müller

Titelillustration: Binary black hole system. © iStock.com/brightstars/gmutlu

Dieser Blogbeitrag basiert auf einer Pressemitteilung des Max-Planck-Instituts für Intelligente Systeme (MPI-IS) in Tübingen, einer Partnerinstitution unseres Exzellenzclusters, und des Max-Planck-Instituts für Gravitationsphysik (Albert-Einstein-Institut/AEI) in Potsdam.

Kommentare

Ich habe die Datenschutzerklärung zur Kenntnis genommen.
19. Juli 2021 Michael Deistler, Jonathan Oesterle

Mit maschinellem Lernen Modelle in der Neurowissenschaft identifizieren

Computermodelle sind ein hervorragendes Werkzeug für die Analyse neuronaler Mechanismen. Doch die Modelle auf die Gehirnaktivität abzustimmen, ist eine große Herausforderung. Wir haben ein Werkzeug entwickelt, das diesen Prozess durch maschinelles Lernen automatisiert, und mit ihm eine Simulationsumgebung für ein Netzhautimplantat geschaffen.
18. Juli 2021 Agustinus Kristiadi , Philipp Hennig

Wie man neuronale Netze mit Unsicherheiten ausstattet

Mit dem Bayesschen Formalismus kann man tiefe neuronale Netze um Unsicherheiten ergänzen. Bayessches Deep Learning gilt allerdings als umständlich und teuer. Neue Ergebnisse zeigen jedoch, wie eine kalibrierte Unsicherheit in tiefen Netzen erreicht werden kann - effizient und ohne die Vorhersagekraft zu beeinträchtigen.